TecHNIcAL RESEARCH REPORT

Relay Placement Approximation Algorithms for k-Connectivity
In Wireless Sensor Networks

by Abhishek Kashyap, Samir Khuller, Mark Shayman

TR 2006-15

INR

INSTITUTE FOR SYSTEMS RESEARCH

ISR develops, applies and teaches advanced methodologies of design and analysis to solve complex, hierarchical,
heterogeneous and dynamic problems of engineering technology and systems for industry and government.

ISR is a permanent institute of the University of Maryland, within the Glenn L. Martin Institute of Technol-
ogy/A. James Clark School of Engineering. It is a National Science Foundation Engineering Research Center.

Web site http://www.isr.umd.edu

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
2006 2. REPORT TYPE 00-00-2006 to 00-00-2006
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Relay Placement Approximation Algorithmsfor k-Connectivity in
Wireless Sensor Networks

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of Maryland,Department of Computer Science ,College REPORT NUMBER
Park,MD,20742

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 10
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Relay Placement Approximation Algorithms for
k-Connectivity in Wireless Sensor Networks*

Abhishek Kashyap', Samir Khuller!, Mark Shayman'
fDepartment of Electrical and Computer Engineering
iDepartment of Computer Science
University of Maryland, College Park, USA
Email: {kashyap@eng, samir@cs, shayman@eng}.umd.edu

Abstract— Sensors typically use wireless transmitters to com-
municate with each other. However, sensors may be located in a
way that they cannot even form a connected network (e.g, due
to failures of some sensors, or loss of battery power). In this
paper we consider the problem of adding the smallest number
of additional (relay) nodes so that the induced communication
graph is k-connected’. The problem is N P-hard. We develop
algorithms that find close to optimal solutions for both edge and
vertex connectivity. For k-connectivity between sensor nodes, we
prove the algorithms have an approximation ratio of O(k?) for
vertex connectivity and O(k) for edge connectivity. In addition,
our methods extend with the same approximation guarantees to a
generalization when the locations of relays are required to avoid
certain polygonal regions (obstacles).

We prove that the algorithms for k-connectivity between sensor
and relay nodes have an approximation ratio of O(k3) for vertex
connectivity and O(k?) for edge connectivity.

I. INTRODUCTION

A wireless sensor network is a group of sensor nodes with
sensing, processing and communication capabilities, deployed
to achieve a certain objective, Akyildiz et a. [1]. Typica
applications of sensor networks are habitat monitoring, envi-
ronmental monitoring, object tracking, etc. Sensor networks
may exist in harsh network conditions, thus the network
must be designed so that failure of some sensor nodes or
some communication links between them does not disrupt the
network. We consider the problem of forming a fault-tolerant
sensor network topology.

We define fault-tolerance as the existence of multiple in-
ternally vertex-digoint (or edge-digoint) paths between each
pair of terminal nodes. If k vertex (edge) digoint paths exist
between each pair of nodes, the network is said to be k-vertex
(edge) connected. A k vertex (edge) connected graph has the
property that the failure of any set of (k — 1) nodes (edges)
cannot disconnect the network. We also consider the problem
where fault-tolerance is desired between both terminal and
relay nodes. We call this objective as full k-connectivity,
and the objective of achieving k-connectivity among terminal
nodes as partial k-connectivity.

1We consider both edge and vertex connectivity. We consider k-connectivity
between sensor nodes, as well as between sensor and relay nodes.

*This research was partidly supported by AFOSR under grant
F496200210217, NSF under grant CNS-0435206, NSF CCF-0430650, NSF
CNS-0519554.

Sensor nodes have very limited energy. Thus, they transmit
at low power levels, and have a limited transmission range.
We assume a fixed transmission range for each sensor node.
It may not be feasible to construct even a connected topology
among the sensor nodes due to their short transmission range
and potential large area deployments. We propose the use
of additional relay nodes, whose position we can control, to
achieve the desired level of connectivity (number of vertex or
edge digoint paths) among the sensor nodes. The relay nodes
are cheaper than sensor nodes as they do not have any sensing
capabilities. We assume they have the same communication
capabilities as the sensor nodes.

There has been recent work in topology control of sensor
networks. Bredin et a. [2] present an O(k*)-approximation
algorithm for achieving full k-vertex connectivity using mini-
mum number of relays for nodes distributed in the Euclidean
plane. Their agorithms use a similar approach as ours and
their analysis for the component that achieves partial k-
vertex connectivity gives an approximation ratio of O(k?).
We analyze our agorithms and prove ratios of O(k?) and
O(k3) for partiadl and full k-connectivity respectively. This
is an O(k) improvement on previous bounds, and we give
algorithms for both edge and vertex connectivity, for both
partial and full k-connectivity. We provided algorithms for
partial k-connectivity in [3], and proved the approximation
ratio to be 10 for edge and vertex connectivity for k& = 2,
for nodes in the Euclidean plane. The approximation ratio
proved in this paper is consistent with Kashyap et a. [3]
for 2-vertex connectivity (see Section I11). We provided an
analysis of the agorithms for partial 2-connectivity among
nodes in higher dimensional metric spaces in [4], and proved
the approximation bounds to be 2M, where M (MST number)
is the maximum node degree in a minimum degree MST in
the space. The MST number is 5 for the Euclidean plane
(Monma and Suri [5]), 13 for the 3-dimensional Euclidean
space, and 4 for the rectilinear plane (Robins and Salowe [6]).
We prove that the agorithm for k-edge connectivity is an
O(Mk)-approximation for partial connectivity, and O (M k?)-
approximation for full-connectivity. The approximation ratio
proved in this paper is consistent with Kashyap et al. [3], [4]
for 2-edge connectivity (see Section V).

Hao et al. [7] consider the problem of placing the minimum
number of backbone nodes (relays) among a set of candidate

locations such that each sensor node has paths to at least
two backbone nodes, and the backbone nodes have at least
two vertex-digoint paths between them. They provide an
approximation algorithm having an O(D log n) approximation
ratio, where D depends on the diameter of the network and
n is the number of sensor nodes in the network. Liu et
al. [8] consider the problem of placing relays in a network
of sensor nodes so that the network is 2-connected. They
provide a (6+¢)-approximation algorithm for connectivity and
two approximation algorithms for 2-connectivity with ratios
(24 + €) and (6/T + 12 + €), where T is the ratio of relays
needed for connectivity to the number of sensor nodes. Their
problem is different from ours as they want the set of relaysto
be a dominating set among the sensor nodes, i.e., each sensor
node should be directly connected to at least one relay node.

The nodes on which a fault tolerant topology is desired
are referred to as terminal nodes in the rest of the paper.
The problem of constructing a connected network on terminal
nodes using a minimum number of relay nodes has been
considered in Lin et a. [9], Mandoiu and Zelikovsky [10]
and Chen et a. [11]. Lin et al. [9] showed the problem to
be NP-Hard and proposed an approximation algorithm for
constructing a tree using relay nodes. They showed algorithm
to be a 5-approximation. The algorithm restricts the placement
of relay nodes on lines joining pairs of terminal nodes. It
then assigns a weight function to each pair of terminal nodes
according to the number of relay nodes needed to connect
them directly. They find a minimum spanning tree (MST) on
this graph. Proofs of 4-approximation ratio for the algorithm
are provided by Mandoiu and Zelikovsky [10] and Chen
et al. [11], and the bound is proved to be tight. Mandoiu
and Zelikovsky [10] prove the approximation ratio to be
M —1 for nodes distributed in higher dimension metric spaces.
Chen et al. [11] also provide a 3-approximation agorithm for
the problem. Cheng et a. [12] provide a 2.5-approximation
randomized algorithm for placement of relay nodes to connect
a given set of terminal nodes.

We consider the problem of providing k-(edge, vertex)
connectivity for £ > 2 among terminal nodes using minimum
number of relay nodes. The contributions of this paper are
as follows: (1) we prove the algorithms of Kashyap et a. [3]
to be O(k?)-approximation with respect to the optimal for
achieving partial k-vertex connectivity among terminals dis-
tributed in the Euclidean plane; (2) we prove the algorithms of
Kashyap et al. [4] to be O(M k)-approximation with respect to
the optimal for achieving partial k-edge connectivity among
terminals distributed in a metric space of MST number M
(M = 5 for Euclidean plane); (3) we extend our algorithms
to the generalization where the relays cannot be placed in
certain polygonal regions and show the same approximation
ratios hold for this generalization as well; (4) we provide an
analysis of the algorithm of Bredin et a. [2] for full k-vertex
connectivity, and provide O(k?*) bounds; (5) we extend our
partial k-edge connectivity algorithm to provide an O(Mk?)-
approximation full k£-edge connectivity algorithm for terminals
distributed in a metric space of MST number M.

The paper is organized as follows: Section Il gives the
network model and problem statement. Section Il describes
the partial k-vertex connectivity approximation algorithm, and
gives the proof of its approximation ratio. Section IV describes
the algorithm for achieving partial k-edge connectivity and
gives the proof of its approximation ratio. Section V extends
the algorithms to work with the same approximation ratio for
the generalization where relays cannot be placed in certain
polygonal regions of the network. Section VI analyzes the
algorithm of Bredin et a. [2] for full k-vertex connectivity,
to give an improved approximation ratio. It also describes the
full k-edge connectivity approximation algorithm. Section VII
concludes the paper.

Il. NETWORK MODEL AND PROBLEM STATEMENT

We model the network as a graph G = (V, E), where V
is the set of sensor nodes, which we call termina nodes, and
E is the set of links between them. We assume each node
has a limited transmission range, which we normalize to one.
It is assumed that a node can connect to all nodes within its
transmission range. A link e = (z,y) belongs to E if nodes
2 and y are within unit distance of each other. The links can
be either omnidirectional RF, directional RF or Free Space
Optical (without obscuration).

We assume we have relay nodes that are identical to the
terminal nodes in terms of their transmission range and type
of links. We assume we have control over the location of relay
nodes. Thus, we place the relay nodes in the network so that
the desired level of connectivity is achieved. We consider two
objectives. one of achieving the desired connectivity between
terminals, and the other of achieving it for both terminals and
relays. The problems can be stated as follows:

Partial k-connectivity: Given agraph G = (V, E), find the
minimum number of relay nodes (denoted by set R) needed
(and their locations) such that the set of nodes V' is k-edge
(vertex) connected (k > 2) in the resulting graph G’ = (V +
R, E'),E C E’. The objective is to construct a graph such
that Vu,v € V, A(u,v) > k; where A\(u,v) is the number
of edge-digoint (or internally vertex-digoint) paths between
wandvin G,

Full k-connectivity: Given a graph G = (V, E), find the
minimum number of relay nodes (denoted by set R) needed
(and their locations) such that the set of nodes V' + R is k-
edge (vertex) connected (k > 2) in the resulting graph G’ =
(V+RE),E C E.

I1l. ALGORITHM FOR k-VERTEX CONNECTIVITY

We use the algorithm of Kashyap et a. [3] for achieving
k-vertex connectivity among terminal nodes using relays. To
connect two terminal nodes outside each other’s transmission
range, the relay nodes are placed on the straight line con-
necting the two nodes. The algorithm proceeds by forming a
complete graph G, on the terminal nodes. Equation 1 gives
the weight function used for the edges, where |e| is the length
of an edge. The weight represents the number of relay nodes
required to form an edge. We do not alow the relay nodes to

have edges other than the ones required to form the edge they
are placed on. Then we compute an approximate minimum
cost spanning k-vertex connected subgraph (G) of G..

ce = [le]] -1 @

The problem of finding the minimum cost spanning k-
vertex connected subgraph of a graph is N P-Hard (Gary and
Johnson [13]. Thus, we use the 2-approximation algorithm
of Khuller and Raghavachari [14] for k¥ = 2, and the k-
approximation algorithm of Kortsarz and Nutov [15] for & > 2.
The agorithm takes O(k*n®m) time, where n is the number
of terminals and m is the number of edges in the graph (which
isn(n — 1) for a complete graph, as in our case). For k£ < 7,
we can use the improved approximation algorithms proposed
by Auletta et al. [16] and Dinitz and Nutov [17]. It is worth
noting that the weight function of Equation 1 is not a metric
as it does not satisfy triangle inequality. In the resulting k-
vertex connected subgraph, the relay nodes are placed to form
the edges (of length greater than one) of the subgraph. We
later prove that this algorithm has an approximation ratio
of O(k?). The solution is then improved by removing some
relays. The relays are allowed to form edges with all nodes in
their transmission range and sequentially removed if k-vertex
connectivity is preserved. We call this step the sequential
removal step. Algorithm 1 describes the algorithm.

Algorithm 1 Relay placement for k-vertex connectivity
1. Construct a complete G. = (V, E.) by adding an edge
between each pair of vertices of graph G.
2. Weight the edges of the graph as follows. |e| represents
the length of edge e.

ce = [le]] =1

3: Compute an approximate minimum cost spanning k-vertex
connected subgraph from this graph G... Let the resulting
graph be G..

4: Place relay nodes (number equal to the weight of the edge)
on the edges in G”, with link costs grester than zero.

5: For all pairs of nodes (including the relay nodes) in G,
within each other’s transmission range, form an edge.

6: For the relay nodes sorted arbitrarily, do the following
(starting at ¢ = 1):

o Remove node i (and al adjacent edges).

o Check for k-vertex connectivity between the termi-
nals.

« If the graphis k-vertex connected, repeat for i = i+1,
else put back the node 7 and corresponding edges, and
repeat for i =4 + 1.

« Stop when all relay nodes have been considered.

7: Output the resulting graph.

A. Proof of Approximation Ratio

We now analyze the agorithm to provide with approx-
imation guarantees. We provide the analysis for terminals

distributed in the Euclidean plane.

We start with some notation. Let 7 be the set of terminals,
and S be the set of optimally placed Steiner nodes (relay
nodes) needed to achieve k-vertex connectivity among the
terminal nodes. Let s be the number of Steiner nodes needed
when we place them optimally, i.e, s = |S|. In the proof,
we will call the relay nodes placed on straight lines between
terminals (as in our algorithm) beads and the optimally placed
relay nodes Steiner nodes.

As a recap of our algorithm, it forms a k-vertex connected
network among the terminal nodes by placing additional links
between them, and if two terminal nodes are more than unit
distance apart, it adds beads (relay nodes) to form that link.
When we add such a link of length [, it consists of [I] — 1
beads.

We first prove the following lemma, and then present the
main result of this section.

Lemma 3.1: A network that is k-vertex connected on ter-
minal nodes using the minimum number of beads contains at
most (3[k/2]([k/2]+1)—1)s beads, where s is the minimum
number of Steiner nodes needed.

Proof: Let Go = (Vp, Ep) be the optima k-vertex
connected network on terminals (having the minimum number
of Steiner nodes).

We follow the procedure of Algorithm 2 to construct a k-
vertex connected network that has beads and no Steiner nodes.
We will prove that this network does not contain more than
(3[k/2]([k/2] +1) — 1)s beads.

Algorithm 2 starts by finding the connected components
(SC;) of Steiner nodes in the graph constructed on the Steiner
nodes. It constructs a minimum-degree minimum spanning
tree (MST) on Steiner nodes for each connected component,
starting with any Steiner node in that component as the root.
Let the trees be ST1,..,ST,,. The agorithm then removes
Steiner nodes of a connected component SC; from G;_;
and adds beads between the terminals connected to those
Steiner nodes to get G, which is also k-vertex connected
between terminal nodes (Step 4). The process is repeated for
all connected components, and the resulting graph has zero
Steiner nodes and is k-vertex connected on the terminals.

Let us now explain the procedure to construct G; from G;_;
by adding beads between the terminal nodes and removing
Steiner nodes. Consider the graph formed by the Steiner nodes
in ST; and the terminal nodes within the transmission range
of these Steiner nodes. Denote this graph by H;. We form a
graph on terminals that is similar to a Harary graph, in which
we form a cycle between the terminal nodes using beaded
(and direct) links between the terminals contained in H; in
G;—1 and delete the Steiner nodes of ST; to get G;. Then, we
connect each terminal node to the preceding [%/2] terminals
on the cycle and the successive [k /2] terminals on the cycle.
If the total number of terminal nodes in H; islessthan k +1,
we form a complete graph.

We now prove that the graph G,,, constructed using the pro-
cedure described above is k-vertex connected on the terminals.
The proof is based on mathematical induction and is similar

Algorithm 2 Construction of k-vertex connected network with
bead
1. Defineagraph Gs = (S, Es) on the Steiner nodes, where
an edge (u,v) isin Eg if it is an edge between the Steiner
nodes u, v in Gy.
2: Find all the connected components (SC;) in Gg.
3: Construct a minimum-degree MST in each connected
component, and call the trees ST1, .., ST,,.
4 Set j=1. While j <m:

1) Remove the Steiner nodes contained in ST; from
Gj_1.

2) Add beads between terminals to get the graph G,
which is aso k-vertex connected on the termi-
nals. The procedure for adding beads and removing
Steiner nodes is explained later.

3 Setj=j+1.

5. Output the resulting graph G,,.

to the proof of k-vertex connectivity in Bredin et d. [2].

Gy isthe optimal Steiner graph, that is k-vertex connected
on the terminals. Let G;_; be k-vertex connected on the
terminals. Thus, removal of any set C' of k—1 vertices does not
disconnect the terminals in G,;_;. We prove by contradiction
that all terminals are connected in G; — C aswell. Let v and
v be the two terminals which are disconnected in G; — C. All
terminal pairs (u, v) have a path in G;_; — C. If the path does
not use more than one terminal connected to component SC;,
u and v are connected in G; — C as well. If the path uses at
least two terminal vertices connected to SC; (uq, vy being the
first and last terminals connected to SC; on the path), that path
exists as well if there are at least k + 1 terminals connected to
SC;, sinceweform aHarary graph (that is k-vertex connected)
between all terminals connected to SC;. If there are less than
k + 1 terminas (which will be uy, v1), a direct edge exists
between them (since we formed a complete graph in that case)
and thus a path exists between v and v in G; — C. Thus, G;
is k-vertex connected on terminals. Therefore, by induction,
G is k-vertex connected on terminals.

We now describe the procedure of constructing the Harary
graph on terminals connected to each Steiner component SC;.
Algorithm 3 describes the algorithm for construction of the k-
vertex connected graph between terminal nodes connected to
the Steiner nodes of ST;. The algorithm works as follows:
Start at the root of ST} (cal the root st;, dropping subscript
j for simplicity). Connect to st; al terminal nodes within
its transmission range, and mark them. Let the set of marked
terminal nodes be {t1, ..,¢;}. Start a Depth First Search (DFS)
traversal of the tree formed by ST; U {¢1,...t;} (rooted
a sty), starting with any child of st;. The children (both
Steiner nodes and terminals) of a node are traversed in an
anti-clockwise manner, i.e., the next child to traverse is the
first child encountered in an anti-clockwise sweep around the
Steiner node, starting from the last child traversed. If no child
of the Steiner node has been traversed yet, the child traversed

(a) Tree on Steiner and ter- (b) Depth first traversal and cy-

minal nodes cle creation
1./"\\ 1.\"“\\
o~ S et
2® 0 28 ‘
/ 8) N
3% | . 9 [3e ‘7 'y
sg’ ‘\ 4.
R A e e,
5 5
(c) Cycle &fter remova of (d) Constructed Harary graph
Steiner nodes
Fig. 1. Example for remova of Steiner nodes and addition of beads for
k=3

is the one encountered in the sweep starting from the parent
node. Whenever a new Steiner node st; is encountered in the
traversal, mark al unmarked terminal nodes in the Steiner
node's transmission range and connect them to it (thus [
increases at this step). Figure 1(a) shows an example tree
constructed using this procedure for £ = 3. While doing the
DFS traversal, add required number of beads to form a link
between each terminal with the next terminal encountered in
the DFS traversal. Complete the cycle by connecting the last
added termina to the first terminal encountered in the DFS
traversal®. Figure 1(b) shows the cycle created between the
terminal nodes in the example, starting at terminal 1. Remove
the Steiner nodes. Form the Harary graph by connecting each
terminal to preceding and successive [k/2] vertices on the
cycle, forming a complete graph if there are lessthan k+1 ter-
minals. The edges longer than unit length are added using the
required number of beads. Figure 1(c) shows the constructed
cycle after remova of Steiner nodes, and Figure 1(d) shows
the final topology (beaded Harary graph) on these terminals
nodes.

It has been proved in Kashyap et al. [3] that for terminals
distributed in the Euclidean plane, the cycle constructed in
step 6 of Algorithm 3 contains maximum 5s; beads for each

°Note that there will be at least two terminals connected to the Steiner
nodes of ST;. If there were only one terminal node, the Steiner nodes of
ST} could be deleted from the optimal Steiner graph without affecting the
connectivity. In case of two terminal nodes, adding one edge between the two
makes it a complete graph, which suffices, as shown before.

Algorithm 3 Removal of Steiner nodes and addition of beads
in STJ

1. Start at root sty of ST}.

2: Connect to it al terminals within its transmission range,
and mark them.

3: Construct atree 7T);, with the vertex set as the Steiner nodes
in ST; and a leaf vertex corresponding to each marked
terminal vertex. The edges are the edges of ST} and the
edges between each Steiner node and the marked terminal
vertices connected to it.

4: Do a Depth First Search (DFS) traversal of T rooted at
sty1, starting with any child of st,. For each node, traverse
its children in an anti-clockwise manner.

5. Each time a new Steiner node st; is encountered, connect
it to all unmarked terminal verticesin its range, and mark
them. Update 7; by adding these termina vertices, and
continue DFS traversal around st; from the edge between
st; and its parent.

6: Connect all the terminal vertices in order of their DFS
traversal and complete the cycle between them.

7. Connect each vertex to preceding and successive [k/2]
vertices on the cycle. Form a complete graph if there are
less than k& + 1 terminals.

8 Add beads to all added edges of length greater than one.

9: Add the newly added edges to G;_;, and remove the
Steiner nodes of ST; and al incident edges from G;_;.
The resulting graph is G;.

A A A
B E B E E
(o} D C D C
(a) Harary graph (b) First cycle (c) Second cycle
A
B
D @ —@c

(d) Third cycle (e) Fourth cycle

Fig. 2. Example for decomposition of a Harary graph for k = 3

Steiner component ST; with s; Steiner nodes. The analysis
only uses the property that the terminals are connected to ST}
in the Steiner solution. Thus, this result holds for any subset of
terminals connected to ST, as long as the cycle is constructed
in an anti-clockwise manner.

Let the number of terminal nodes in H; (connected to the
Steiner component in consideration) be N. We consider the
case N > k + 1, so that we can construct the Harary graph®.
We decompose the constructed Harary graph into complete

3Else, we construct a complete graph, which is a subset of the set of edges
in the Harary graph (since N < k + 1). Thus, the analysis for Harary graph
is an upper bound for this case.

and incomplete cycles (we call all of them cycles), and use
the result of Kashyap et al. [3] to compute its cost. Let us
explain it with an example of Figure 2. Figure 2(a) shows
the Harary graph constructed for £ = 3, with each terminal
connecting to preceding and successive two nodes on the cycle.
We decompose the graph into multiple cycles as follows:

o Type I cycle: First cycle is the cycle formed between all
the terminals, as constructed in steps 1-6 of Algorithm 3.

o Type Il cycles: We now consider the edges needed to
connect nodes with preceding and successive nodes ¢
hops away (number of edges between the nodes in the
Type | cycle) on the Type I cycle into multiple cycles.
We start with any terminal node (node A in the example),
and form a complete or incomplete cycle by starting
with the node and traversing edges that connect nodes i
hops away, in an anti-clockwise manner. The cycle ends
before or at the node we started at. Figure 2(c) shows the
constructed cycle for i = 2. We repeat the procedure for
the ¢ — 1 nodes successive to the node we started at (node
B in the example, for i = 2), obtaining one complete or
incomplete cycle in each case. Figure 2(d) shows this
cycle for the example. Each cycle contains | N/i| edges,
and there are ¢ Type |l cycles. Each node is connected
to one preceding node and one successive node ¢ hops
away. Thus, N edges are required to connect all nodes
with neighbors i hops away on the Type | cycle. The
total edges covered by Type Il cyclesisi|N/i|. Thus, to
cover the N — i| N/i] uncovered edges, we form Type
Il cycles, which are just single edges.

o Type Il cycles: These cycles are single edges, each
pertaining to one of the N — ¢|N/i] uncovered edges.
Figure 2(e) shows the cycle for the example.

There is one Type | cycle in the Harary graph, and i Type
[l and N —i|N/i] Typelll cyclesfor eachi = 2,3, .., [k/2].
These cycles cover al the edges in the Harary graph, and thus
the number of beads needed for these cycles is the same as
needed for the Harary graph. The Type | cycle uses at most
5s; beads. The following lemma bounds the number of beads
needed for the Type Il edges.
Lemma 3.2: A Type Il cycle constructed from edges con-
necting nodes ¢ hops apart requires at most 5s; beads.
Proof: Let the set of terminals in the Harary graph be
7;. Let the set of terminals in the Type Il cycle be 7/ C 7;.
Consider another instance of the problem, in which only the
terminals of 7, are connected to the Steiner node MST STj.
Follow steps 1-6 of Algorithm 3 on this instance to form a
cycle. Thiscycle has at most 5s; beads, Kashyap et al. [3]. The
only difference between this instance and the original instance
is that the terminas 7;\7; have been removed. The order
of children traversal in the DFS traversal is anti-clockwise.
Removing the terminals 7;\7; does not change the order
in which the terminals 7 are encountered (compared to the
origina instance). Thus, the cycle constructed cycle is the
same as the Type Il cycle in consideration (or has one extra
edge if the Type Il cycle is not complete). Thus, the Type Il

cycle has at most 5s; beads. |

Now, we consider the Type Il cycles. Each Type Il cycle
isjust an edge. Thus, the required number of beads is at most
the number of Steiner nodes in the DFS path between the end-
terminals of this edge. Thus, a Type Il edge requires at most
S; beads.

Thus, the total number of beads (b;) required by the Harary
graph is as given in Equation 2.

[k/2]

bs;+ _ (5i+ N —i|N/i])s;
=2
[k/2]

= bs;j+ Y (5i+i(N/i—|N/i]))s,
=2
[k/2]

5s; + Z (61)s;
=2

&
N

IN

I
—~
(=}
<.
|
—_
N~—
VA
<

i=1

(3[k/21([k/2] + 1) — 1)s; ?)

Since the Steiner components SC; do not have common
Steiner nodes, the number of beadsisat most (3[k/2]([k/2]+
1) — 1)s. Thus, a solution with minimum number of beads
requires at most (3[k/2]([k/2] 4+ 1) — 1)s beads. [|

Theorem 3.3 states the main result of this section.

Theorem 3.3: If the optimal network uses s Steiner nodes
so that terminal s distributed in the Euclidean plane are k-vertex
connected, Algorithm 1 forms a network with maximum of
c(3[k/2]([k/2] +1) — 1)s beads and zero Steiner nodes, in
which the terminal nodes are k-vertex connected.

Proof: The agorithm for finding a k-vertex connected
subgraph is a c-approximation for finding the minimum cost
k-vertex connected subgraph (cost of each edge being number
of beads required to form it). Thus, according to Lemma 3.1,
the number of beads required is a most c(3[k/2]([k/2] +
1) — 1)s. The last step of Algorithm 1 (sequential removal
step) removes beads from the network by alowing them to
connect to al nodes within the transmission range, so the
resulting network after sequential removal also has maximum
of c(3[k/2]([k/2] + 1) — 1)s relay nodes. [|

For k = 2, ¢ is 2, and the agorithm is 10-approximation,
which is consistent with the results of Kashyap et a. [3].

IV. ALGORITHM FOR k-EDGE CONNECTIVITY

We follow the algorithm proposed by Kashyap et al. [4]. To
connect two terminal nodes outside each other’s transmission
range, the relay nodes are placed on the straight line connect-
ing the two nodes. The algorithm proceeds by forming a multi-
graph G. on the terminal nodes. There are k edges between
each pair of terminal nodesin G.. We use the weight function
of Equation 1 to weight the edges. We do not alow the relay
nodes to have edges other than the ones reguired to form the
edge they are placed on. Then we compute an approximate

minimum cost spanning k-edge connected subgraph (G?) of
the multi-graph G..

The problem of finding the minimum cost spanning k-
edge connected subgraph of a graph is N P-Hard (Gary and
Johnson [13]). Thus, we use an approximation algorithm
for the problem, proposed by Khuller and Vishkin [18].
The algorithm achieves an approximation ratio of 2 for the
problem, and takes O((kn)?) time for a graph with n nodes.
The algorithm uses the matroid intersection based algorithm
of Gabow [19], which finds & edge-disoint spanning trees
from a root vertex in a directed graph. It is worth noting
that the weight function of Equation 1 is not a metric as it
does not satisfy triangle inequality. Thus, the approximation
algorithm of Khuller and Vishkin [18] is the best known for
the problem. In the resulting subgraph from the approximation
algorithm of Khuller and Vishkin [18], the relay nodes are
placed to form the links (of length greater than one) of the
subgraph. In the next section, we prove that this algorithm
has an approximation ratio of 2/ [k/2]s. The solution is then
improved by removing some relays. The relays are alowed
to form edges with all nodes in their transmission range
and sequentially removed if k-edge connectivity is preserved.
We cdl this step the sequential removal step, and it takes
O(n/((n + n/)m)) time, where n’ is the number of relays
before the sequential removal step, and m is the number of
edges in the network formed by the terminals and relays. Thus,
the first part of the algorithm takes O((kn)?) time, while
the complete algorithm takes O((kn)? + n'm(n + n’)) time.
Algorithm 4 describes the algorithm. For a network in a cuboid
of length L, the maximum number of relays on any edgein G,
is O(L), and the number of edges in the graph at the output of
Step 3 of Algorithm 4 (G2) isk(n—1), thus, n’ = O(knL) and
m = O((knL)?). Therefore, the algorithm takes O((knL)*)
time.

A. Proof of Approximation Ratio

We now analyze the algorithm to provide with approxi-
mation guarantees. Let the terminal nodes be placed in any
metric space with MST number M [6]. MST number is
defined as the maximum node degree in a minimum-degree
Minimum Spanning Tree (MST) spanning points from the
space. The MST number for the Euclidian planeis 5 [5], three-
dimensional Euclidian space is 12, and rectilinear plane (two-
dimensional space with metric defined by L, norm) is 4. The
approximation ratio for the MST based algorithm of [9] for
connecting terminal s using minimum relays has been shown to
be M —1 in [10]. We prove that the algorithm isa 2M [k/2]-
approximation.

We start with some notation. Let 7 be the set of terminals,
and S be the set of optimaly placed Steiner nodes (relay
nodes) needed to achieve k-edge connectivity among the
terminal nodes. Let s be the number of Steiner nodes needed
when we place them optimally, i.e, s = |S|. In the proof,
we will call the relay nodes placed on straight lines between
terminals (as in our algorithm) beads and the optimally placed
relay nodes Steiner nodes.

Algorithm 4 Relay placement for k-edge connectivity
1. Make a multi-graph G. = (V, E.) by adding k edges
between each pair of vertices of graph G.
2: Weight the edges of the graph as follows. |e| represents
the length of edge e.

co=lel] ~ 1

3. Compute an approximate minimum cost spanning k-edge
connected subgraph from this graph G.. using the approx-
imation algorithm proposed by Khuller and Vishkin [18].
Let the resulting graph be G".

4: Place relay nodes (number equal to the weight of the edge)
on the edges in G”, with link costs grester than zero.

5: For all pairs of nodes (including the relay nodes) in G,
within each other’s transmission range, form an edge.

6: For the relay nodes sorted arbitrarily, do the following
(starting at ¢ = 1):

o Remove node i (and all adjacent edges).
o Check for k-edge connectivity between the terminals.
« If the graph is k-edge connected, repeat for i = i+1,
else put back the node 7 and corresponding edges, and
repeat for i =i + 1.
« Stop when all relay nodes have been considered.
7: Output the resulting graph.

As arecap of our algorithm, it forms a k-edge connected
network among the terminal nodes by placing additional links
between them, and if two terminal nodes are more than unit
distance apart, it adds beads (relay nodes) to form that link.
When we add such a link of length [, it consists of [I] — 1
beads.

We first prove the following lemma, and then the main result
of this section.

Lemma 4.1: A k-edge connected network on terminal
nodes using minimum number of beads contains at most
M [k/2]s beads, where s is the minimum number of Steiner
nodes needed.

Proof: Let Go = (Vb,Ep) be the optimal k-edge
connected network on terminals (having the minimum number
of Steiner nodes).

We follow a dightly modification of Algorithm 2 to con-
struct a k-edge connected network that has beads and no
Steiner nodes. We will prove that this network does not contain
more than Mk beads.

The algorithm starts by finding the connected components
(SC;) of Steiner nodes in the graph constructed on the Steiner
nodes. It constructs a Breadth First Search (BFS) spanning tree
on Steiner nodes for each connected component, starting with
any Steiner node in that component as the root. Let the trees
be STy, ..,ST,,. The algorithm then removes Steiner nodes
of a connected component SC; from G;_; and adds beads
between the terminals connected to those Steiner nodes to get
G; which is also k-edge connected between terminal nodes
(Step 4). The processis repeated for all connected components,

and the resulting graph has zero Steiner nodes and is k-edge
connected on the terminals.

Let us now explain the procedure to construct G5 from G _;
by adding beads between the terminal nodes and removing
Steiner nodes. Consider the graph formed by the Steiner nodes
in ST} and the terminal nodes within the transmission range of
these Steiner nodes. Denote this graph by H;. We form acycle
among the terminals in H;, and replicate the edges to have
[k/2] copies of each. We use beads to form the edges longer
than unit length. The terminals in H; are k-edge connected
since deleting any set of £k — 1 edges does not disconnect
the terminals from each other. This procedure maintains k-
edge connectivity between the terminal nodes that were k-edge
connected because of the Steiner nodes in ST;. As we do this
for al trees STy, .., ST,,*, and do not create any (k — 1)-edge
cut in any step, the resulting network is k-edge connected on
the terminals.

It has been proved in Kashyap et a. [4] that the constructed
cycle contains at most 1/ s; beads for each Steiner component
ST with s; Steiner nodes. We replicate the edges to include
[k/2] — 1 additional copies of each edge, and thus the graph
uses M [k/2]s; beads. Since the Steiner components do not
have common Steiner nodes, total number of beads required
is bounded by M[k/2]s. [|

Theorem 4.2 states the main result of this section.

Theorem 4.2: If the optimal network uses s Steiner nodes
so that terminals distributed in metric space of MST number
M are k-edge connected, Algorithm 4 forms a network with
maximum of 2M[k/2]s beads and zero Steiner nodes, in
which the termina nodes are k-edge connected.

Proof: The algorithm of Khuller and Vishkin [18] isa 2-
approximation for finding the minimum cost (cost of each edge
being number of beads required to form it) k-edge connected
subgraph. Thus, the number of beads required is at most
2MTk/2]s. The last step of Algorithm 4 (sequential removal
step) removes beads from the network by alowing them to
connect to al nodes within the transmission range, so the
resulting network after sequential removal also has a most
2MTk/2]s relay nodes. Note that for & = 2, the algorithm is
a 2 M -approximation, which is consistent with the ratio proved
in Kashyap et a. [4]. []

V. GENERALIZATION TO RESTRICTED RELAY PLACEMENT

We extend our results for terminals distributed in a Euclidian
plane to the scenario where relays cannot be placed in certain
polygonal regions of the network . We call these regions for-
bidden regions. We assume that two nodes can communicate
if they are within each other’s transmission range even when
there is a forbidden region between them. We modify the
edge and vertex connectivity algorithms to work with the same
approximation guarantees for this generalization.

We follow the same agorithms as before for both edge
connectivity and vertex connectivity. It may not be possible

4I1f two terminal nodes are adjacent in multiple cycles formed while
removing the Steiner components, we form maximum k beaded links between
them. This suffices for maintaining k-edge connectivity.

to connect two terminals by placing relay nodes on the
straight line between them due to the forbidden regions. Thus,
Equation 1, which represents the number of relays needed to
connect two terminals by placing relays on the line between
them, cannot be used to weight the edges of the network
formed on terminal nodes in our agorithms. Recently, a
polynomial time algorithm has been proposed for placing
the minimum number of relay nodes needed to form a link
between two nodes with the presence of polygonal forbidden
regions between them [20] . The problem is called the puddle-
jumper problem. We modify our edge weights by running
the agorithm given in [20] on each pair of terminals in the
network to find the minimum number of relay nodes needed
for each link, and using that as the weight of each edge.
We then run our edge connectivity and vertex connectivity
algorithms on a network with these edge weights. Then, for the
selected links, we place the relays according to the algorithm
given in [20].

A. Proof of Approximation Ratio

We first prove that the approximation ratio for the k-vertex
connectivity algorithm is O(k?) for terminals distributed in the
Euclidian plane. We follow the same construction as before,
the only change being that beads (relay nodes) are not placed
on straight lines between terminal nodes now; instead they
are placed optimally taking forbidden regions into account.
The only part of the proof that needs reconsideration to take
forbidden regions into account is when Steiner nodes on a tree
(51T;) are removed from the optimal Steiner solution and beads
are placed to make the cycle (and the Harary graph) between
terminal nodes connected to tree ST; (see Algorithm 3). We
argue that the number of relays needed to form a beaded link
between two terminalsis still upper bounded by the number of
Steiner nodes encountered in the depth first traversal between
the two terminals: Take any two terminals being connected
using beads, and let a be the number of Steiner nodes on
the DFS path between them. Thus, there is a placement of
Steiner nodes to connect the two terminal nodes using a
Steiner nodes. As even Steiner nodes could not be placed in
forbidden regions, and we connect the terminals using beads
placed according to the optimal agorithm of [20], the number
of beads required is upper bounded by a. Thus, each bead
can il be charged to a different Steiner node on the DFS
path between the terminals. We showed in Section 1V that
each Steiner node is charged at most (3[k/2]([k/2]+1)—1)
times (M = 5 for Euclidian plane), so the total number of
beads required for replacing the Steiner node tree ST} is still
(3[k/2]([k/2] +1) — 1)s;, s; being the number of Steiner
nodes in ST;. Thus the total number of beads required in
the network is at most (3[k/2]([k/2] + 1) — 1)s for the
beaded network using minimum number of beads, s being
the number of optimal Steiner nodes. As our agorithms use
c-approximations (¢ = 2 for edge-connectivity) for finding the
optimal beaded network, the algorithms are ¢(3[%/2]([k/2] +
1) — 1)s-approximations.

The same arguments can be used to prove that the edge-
connectivity algorithm is 10k /2]-approximation for this gen-
eralization (¢ = 2 for edge-connectivity, and M = 5 for
Euclidean plane).

VI. FuLL k-CONNECTIVITY

We now present the algorithms and analysis for achieving
k-vertex and k-edge connectivity between terminals and added
relays. We first discuss k-vertex connectivity.

A. Full k-vertex connectivity

We use the algorithm proposed in Bredin et a. [2]. The
algorithm adds relays to find a subgraph on terminals that is
k-vertex connected on terminals using the algorithm presented
in Section I11. Then, for each edge of the k-connected subgraph
with weight greater than zero, i.e., with at least one relay, the
algorithm places additional k& — 1 relays at each of the end
terminal vertices of the edge, and k — 1 relays along with each
relay used on the edge. In the resulting graph, all terminals
and relays have k-vertex connectivity. The algorithm has been
proved to have an approximation ratio of O(k*) for terminals
in Euclidean plane. We improve the analysis, and prove the
agorithm to be an O(k?)-approximation. Theorem 6.1 states
the result. Here, ¢ is the approximation ratio of the best
algorithm for finding a k-vertex connected subgraph of a
graph.

Theorem 6.1: If the optimal network uses s Steiner nodes
so that terminals and Steiner nodes are k-vertex connected, the
algorithm of Bredin et a. [2] forms a network with at most
3c(3[k/2]([k/2] + 1) — 1)ks relays and zero Steiner nodes,
in which the terminal and relay nodes are k-vertex connected.

Proof: The optimal network that is k-vertex connected
only on terminals uses s Steiner nodes. Thus, according to
Theorem 3.3, the intermediate graph that is k-vertex connected
on terminals has at most ¢(3[k/2]([k/2]+1)—1)s relays. As
shown in Bredin et a. [2], for each edge between terminals
with w > 1 relays, we duplicate them to have a total of
kw + 2(k — 1) < 3kw relays on the edge. Thus, the total
number of relays in the final fully k-vertex connected graph
is bounded by 3c(3[k/2]([k/2] + 1) — 1)ks, which is an
O(k3)-approximation, an O(k) improvement over the previous
bounds of Bredin et a. [2]. []

B. Full k-edge connectivity

For edge connectivity, we use the algorithm presented in
Section V. We use the algorithm to construct a k-edge
connected subgraph on terminals, and then duplicate the relays
needed on the edges of that subgraph. For each edge of weight
greater than zero, we place additional [k/2] —1 relays at each
end terminal vertex of the edge, and each relay location on
that edge. The resulting graph is k-edge connected on both
terminals and relays. We prove the agorithm is an O(Mk?)-
approximation for terminals distributed in a metric space of
MST number M. Theorem 6.2 states the result.

Theorem 6.2: If the optimal network uses s Steiner nodes
so that terminals and Steiner nodes are k-edge connected, our

agorithm forms a network with at most 6 [k/2]2s relays
and zero Steiner nodes, in which the terminal and relay nodes
are k-edge connected.

Proof: The optima network that is k-edge connected
only on terminals uses s Steiner nodes. Thus, according to
Theorem 4.2, the intermediate graph that is k-edge connected
on terminals has at most 2M [k/2]s relays. Then, for each
edge between terminals with w > 1 relays, we duplicate them
to have atotal of [k/2]w + 2([k/2] — 1) < 3[k/2]w relays
on the edge. Thus, the total number of relays in the final fully
k-edge connected graph is bounded by 6M [k/2]%s. [

VIlI. CONCLUSION

We considered the problem of constructing a fault-tolerant
topology among sensor nodes using minimum number of
additional relay nodes. We proposed O(k?)-approximation
algorithms for achieving k-vertex connectivity between sensor
nodes distributed in the Euclidean plane. We proposed 2M k-
approximation algorithms for achieving k-edge connectivity
between terminal nodes distributed in any metric space with
MST number M. We extended our algorithms to work with the
same approximation guarantees for the generalization where
the relay nodes cannot be placed in certain polygonal regions
of the network. We analyzed an existing algorithm proposed
for achieving k-vertex connectivity between sensor nodes
and relays using minimum number of relays, and proved
it to have an approximation guarantee of O(k®), which is
an O(k) improvement over previously proved bounds. We
also proposed an agorithm for achieving k-edge connectivity
between sensor nodes and relays using minimum number of
relays, and proved it to have an approximation guarantee of
O(ME?).

REFERENCES

[1] 1. R Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: a survey,” Computer Networks, vol. 38, no. 4, pp. 393—
422, 2002.

[2] J. L. Bredin, E. D. Demaine, M. Hajiaghayi, and D. Rus, “Deploying
sensor networks with guaranteed capacity and fault tolerance,” ACM
MobiHoc, pp. 309-319, 2005.

[3] A. Kashyap, S. Khuller, and M. Shayman, “Relay placement for higher
order connectivity in wireless sensor networks,” |EEE INFOCOM, 2006.

[4] ——, “Relay placement for fault-tolerance in wireless sensor networks
in higher dimensions,” submitted to ACM Trans. Sensor Networks, 2006.

[5] C. Monma and S. Suri, “Transitions in geometric minimum spanning
tree,” Discrete and Computational Geometry, vol. 8, pp. 265-293, 1992.

[6] G. Robins and J. S. Salowe, “Low-degree minimum spanning trees,”
Discrete Computational Geometry, vol. 14, pp. 151-165, 1995.

[7] B. Hao, J. Tang, and G. Xue, “Fault-tolerant relay node placement in
wireless sensor networks: Formulation and approximation,” |IEEE HPSR,
pp. 246-250, 2004.

[8] H. Liu, P. Wan, and X. Jia, “Fault-tolerant relay node placement in
wireless sensor networks,” International Computing and Combinatorics
Conference (COCOON), 2005.

[9] G.-H. Lin and L. Wang, “Steiner tree problem with minimum number

of Steiner points and bounded edge-length,” Information Processing

Letters, vol. 69, pp. 53-57, 1999.

I. Mandoiu and A. Zelikovsky, “A note on the mst heuristic for bounded

edge-length Steiner trees with minimum number of Steiner points,”

Information Processing Letters, vol. 75, no. 4, pp. 165-167, 2000.

D. Chen, D.-Z. Du, X.-D. Hu, G.-H. Lin, L. Wang, and G. Xue,

“Approximations for Steiner trees with minimum number of Steiner

points,” Theoretical Computer Science, vol. 262, pp. 83-99, 2001.

[10]

[11]

(12]
(13]

[14]

(19]

(16]

(17]

(18]

(19]

[20]

X. Cheng, D.-Z. Du, L. Wang, and B. Xu, “Relay sensor placement in
wireless sensor networks,” ACM Winet, 2004.

M. Garey and D. Johnson, Computers and Intractability: A guide to the
theory of NP-Completeness. Freeman and Company, 1979.

S. Khuller and B. Raghavachari, “Improved approximation algorithms
for uniform connectivity problems,” Journal of Algorithms, vol. 21,
no. 2, pp. 434-450, 1996.

G. Kortsarz and Z. Nutov, “Approximating node connectivity problems
via set covers,” Algorithmica, vol. 37, pp. 75-92, 2003.

V. Auletta, Y. Dinitz, Z. Nutov, and D. Parente, “A 2-approximation al-
gorithm for finding an optimum 3-vertex connected spanning subgraph,”
Journal of Algorithms, vol. 32, pp. 21-30, 1999.

Y. Dinitz and Z. Nutov, “A 3-approximation agorithm for finding opti-
mum 4,5-vertex connected spanning subgraphs,” Journal of Algorithms,
vol. 32, pp. 31-40, 1999.

S. Khuller and U. Vishkin, “Biconnectivity approximations and graph
carvings,” Journal of the ACM, vol. 41, no. 2, pp. 214-235, 1994.

H. N. Gabow, “A matroid approach to finding edge connectivity and
packing arborescences,” |EEE Annual Symposium on Foundations of
Computer Science, pp. 812-822, 1991.

E. Arkin, E. Demaine, and J. Mitchell, “The puddie-jumper problem,”
Personal Communication, 2005.

